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Design Argument
• Person ? in setting Typed Functional Programming wants to (G) 
synthesize program from examples but obstacles (O1) large search 
space get in the way. Any solution has to satisfy constraints 
(X1) types & (X2) examples, minimize costs (Y1) runtime & (Y2) 
complexity of solution, and avoid obstacles of (Z1) incorrect 
solution. 

• (A1) “synthesis techniques have many potential applications” (A2) 
“synthesizing programs with structured data, recursion and 
higher-order functions in a typed programming language” is useful 

• Approach MYTH has characteristics (C1) type-driven (C2) evaluate 
during enumeration (C3) prune by examples that help achieve goal 
(G) while avoiding obstacles (O1) & (Z1).



Typed FP Program Synthesis

(* Type signature for natural numbers and lists *) 

type nat = O | S of nat 

type list = Nil | Cons of nat * list 

(* Goal type refined by input / output examples *) 

let stutter : list -> list |> 
  { [] => [] | [0] => [0;0] | [1;0] => [1;1;0;0] } = ?
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Typed FP Program Synthesis

(* Output: synthesized implementation of stutter *) 
let stutter : list -> list = 
  let rec f1 (l1:list) : list = 
    match l1 with 
    | Nil -> l1 
    | Cons(n1, l2) -> Cons(n1, Cons(n1, f1 l2)) 
  in f1
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Approach Overview
• Type Refinement 
from type, we know input is type list and output is type 
list. Refine each example into a “world”. 

• Guessing 
must agree on all examples 
must be structurally recursive 

• Match Refinement 
case analysis on algebraic data type 
split examples accordingly 

• Recursive Functions 
examples as approximation



Limitations
• Type Refinement 
from type, we know input is type list and output is type 
list. Refine each example into a “world”. 

• Guessing 
must agree on all examples 
must be structurally recursive 

• Match Refinement 
case analysis on algebraic data type 
split examples accordingly 

• Recursive Functions 
examples as approximation



Key ideas

• Program synthesis as proof search 

• Prune search space by input-output examples 

• Refinement tree



“The rules make explicit when we are checking types 
(I-forms) versus generating types (E-forms), 

respectively. We can think of type information 
flowing into I-forms whereas type informations flows 

out of E-forms. This analogy of information flow 
extends to synthesis: when synthesizing I-forms, we 

push type-and-example information inward. In 
contrast, we are not able to push this information 

into E-forms.” 







Guess an E of type !τ



“Generating a variable 
requires no recursive generation—we 
simply choose any variable from the 

context of the appropriate type.”



“Generating an 
application consists of generating a 

function that produces the desired goal 
type and then generating a 

compatible argument.”



… other cases for constructor, fix, match …



… other cases for constructor, fix, match …

“Because Es are also 
syntactically considered Is, 
generate an E by using the 

[previous] judgment.”



… other cases for constructor, fix, match …

“generate a constructor value 
by recursively generating 

arguments to that constructor”



… other cases for constructor, fix, match …



“Our new insight is that it is possible to modify the 
typing rules so that they “push” examples towards the 
leaves of the typing derivation trees that serve as 
the scaffolding for the generated program terms. 

Doing so permits the algorithm to evaluate candidate 
terms early in the search process, thereby 

potentially pruning the search space dramatically. 
Rather than following the naïve strategy of 

“enumerate and then evaluate,” our algorithm follows 
the more nuanced approach of “evaluate during 

enumeration.”” 



“A refinement tree is a data structure that describes 
all the possible shapes (using I-forms) that our 
synthesized program can take, as dictated by the 
given examples. Alternatively, it represents the 

partial evaluation of the synthesis search procedure 
against the examples. In [the stutter synthesis], 
match has been specialized to case on l1, the only 
informative scrutinee justified by the examples.” 





Limitations



Trace-Complete (No)
let list_stutter : list -> list |> 

  { [] => [] 

  | [0] => [0;0] 

  | [1;0] => [1;1;0;0] 

  (*| [1;1;0] => [1;1;1;1;0;0]*) 

  | [1;1;1;0] => [1;1;1;1;1;1;0;0] 

  } = ? 
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Trace-Complete (OK)
let list_stutter : list -> list |> 

  { [] => [] 

  | [0] => [0;0] 

  | [1;0] => [1;1;0;0] 

  | [1;1;0] => [1;1;1;1;0;0] 

  | [1;1;1;0] => [1;1;1;1;1;1;0;0] 

  } = ? 



“However, in the presence of recursive functions, 
doing so is unsound. Consider synthesizing the Cons 
branch of the stutter function from Section 2 but 

with the example set {[] => [], [1;0] => [1;1;0;0]}. 
If we synthesized the term f1 l2 rather than Cons(n1, 
Cons(n1, f1 l2)), then we will encounter a NoMatch 
exception because l2 = [0]. This is because our 

example set for f1 contains no example for [0]. If we 
simply accepted f1 l2, then we would admit a term 
that contradicted our examples since f1 l2 actually 

evaluates to [] once plugged into the overall 
recursive function.” 



Other Limitations

• No higher-order functions in input/output. 

• Helper functions have to be provided in context.



Arith Example
let arith : exp -> nat |> 
{ Const (0) => 0 | Const (1) => 1 | Const (2) => 2 
| Sum (Const(2), Const(2)) => 4 
| Sum (Const(2), Const(1)) => 3 
| Sum (Const(0), Const(2)) => 2 
| Prod (Const(0), Const(2)) => 0 
| Prod (Const(2), Const(1)) => 2 
| Prod (Const(2), Const(2)) => 4 
| Prod (Prod(Const(2), Const(2)), Const(2)) => 8 
| Prod (Sum(Const(2), Const(1)), Const(2)) => 6 
(* … *) 
} = ?



Arith Example

let arith : exp -> nat = 
  let rec f1 (e1:exp) : nat = 
    match e1 with 
      | Const (n1) -> n1 
      | Sum (e2, e3) -> sum (f1 e2) (f1 e3) 
      | Prod (e2, e3) -> mult (f1 e2) (f1 e3) 
      (* … *) 
  in f1



Artifact

• https://github.com/silky/myth

https://github.com/silky/myth


Discussion



• Good fit in real-world use cases? User studies? 

• Interactively validating/rejecting examples? 
(A: in practice, you iteratively refine the examples if 
the synthesizer doesn’t do what you want.) 

• Applicability? 

• Inside-out recursion? 

• Comparisons with other tools?
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