
Programming Languages
whirlwind tour



Research in Programming Languages

• Coming with reusable insights and solutions. 

• The problem is general and abstract. A problem space 
instead of a problem. 

• Example: https://2019.splashcon.org/details/
splash-2019-oopsla/2/Probabilistic-Verification-of-
Fairness-Properties-via-Concentration

https://2019.splashcon.org/details/splash-2019-oopsla/2/Probabilistic-Verification-of-Fairness-Properties-via-Concentration
https://2019.splashcon.org/details/splash-2019-oopsla/2/Probabilistic-Verification-of-Fairness-Properties-via-Concentration
https://2019.splashcon.org/details/splash-2019-oopsla/2/Probabilistic-Verification-of-Fairness-Properties-via-Concentration


• POPL (principles of PL) 

• PLDI (PL design and implementation) 

• ICFP 

• OOPSLA (SPLASH) 

• ECOOP 

• JFP, HOSC, TOPLAS 

• workshops…

Venues



Mentoring Events

• PL mentoring workshop (PLMW): scholarship to attend 
conference + mentoring workshop. 

• Oregon Programming Language Summer School (OPLSS).



What is programming?
• Manipulating Processes 

• Managing complexity 

• Controlling outcomes 

• Thoughts as computation 

• Reasoning 

• Procedural vs. declarative knowledge



A language has

• primitives, 

• means of combination, 

• means of abstraction.



Back in time…
• The acts of the mind, wherein it exerts its power over 
simple ideas, are chiefly these three: 1. Combining 
several simple ideas into one compound one, and thus all 
complex ideas are made. 2. The second is bringing two 
ideas, whether simple or complex, together, and setting 
them by one another so as to take a view of them at once, 
without uniting them into one, by which it gets all its 
ideas of relations. 3. The third is separating them from 
all other ideas that accompany them in their real 
existence: this is called abstraction, and thus all its 
general ideas are made. 

• John Locke, An Essay Concerning Human Understanding (1690)



ex: arithmetic

• primitives: 0, 1, 2, 3, … 

• means of combination: +, *, -, … 

• means of abstraction: x, y, z, …



ex: first-class functions

• primitives: 0, 1, 2, 3, …, +, *, - 

• means of combination: function application, () 

• means of abstraction: function abstraction, define



Pan

• http://conal.net/papers/functional-images/ 

• primitives: an image is a function from coordinates to 
pixel. 

• means of combination: composing images is composing 
functions. 

• means of abstraction: as defined by host language.

http://namin.org/pan
http://conal.net/papers/functional-images/


Compositional Meaning

• Syntax 

• Meaning is syntax-driven, and take meaning of parts to 
meaning of whole. 

• Denotational semantics



ex: arithmetic

• [syntax] = number 

• primitives: 0, 1, 2, 3, … 
[n] = n 

• means of combination: +, *, -, … 
[t1 + t2] = [t1] + [t2] 

• means of abstraction: x, y, z, … 
[x] = lookup x in env???



ex: arithmetic

• [syntax] = env => number 

• primitives: 0, 1, 2, 3, … 
[n] = e => n 

• means of combination: +, *, -, … 
[t1 + t2] = e => [t1]e + [t2]e 

• means of abstraction: x, y, z, … 
[x] = e => lookup x in e



Semantics

• static semantics (e.g. type system) 

• dynamic semantic (e.g. small-step or big-step)



Formal Reasoning

• Coq, Agda, …, pencil & paper 

• https://softwarefoundations.cis.upenn.edu/plf-current/
toc.html 

• Curry-Howard Isomorphism

https://softwarefoundations.cis.upenn.edu/plf-current/toc.html
https://softwarefoundations.cis.upenn.edu/plf-current/toc.html


Verification

• Frama-C 

• Dafny 
https://rise4fun.com/dafny 

• F*  
https://www.fstar-lang.org/tutorial/

https://rise4fun.com/dafny
https://www.fstar-lang.org/tutorial/


Synthesis
• Survey: https://rishabhmit.bitbucket.io/papers/
program_synthesis_now.pdf 

• Some applications: 

• data wrangling: FlashFill 
https://microsoft.github.io/prose/ 

• graphics: SKETCH-N-SKETCH 
https://ravichugh.github.io/sketch-n-sketch/releases/
icfp-2018-svg/

https://rishabhmit.bitbucket.io/papers/program_synthesis_now.pdf
https://rishabhmit.bitbucket.io/papers/program_synthesis_now.pdf
https://rishabhmit.bitbucket.io/papers/program_synthesis_now.pdf
https://microsoft.github.io/prose/
https://ravichugh.github.io/sketch-n-sketch/releases/icfp-2018-svg/
https://ravichugh.github.io/sketch-n-sketch/releases/icfp-2018-svg/


Logic Programming

• miniKanren 

• http://io.livecode.ch/learn/webyrd/webmk 

• http://io.livecode.ch/learn/gregr/icfp2017-artifact-
auas7pp 

• Prolog 

• Constraint programming

http://io.livecode.ch/learn/webyrd/webmk
http://io.livecode.ch/learn/gregr/icfp2017-artifact-auas7pp
http://io.livecode.ch/learn/gregr/icfp2017-artifact-auas7pp


Probabilistic Programming
• webPPL 

• http://webppl.org/ 

• http://dippl.org/ 

• Hansei 

• http://okmij.org/ftp/kakuritu/Hansei.html 

• Hakaru 

• https://hakaru-dev.github.io/

http://webppl.org/
http://dippl.org/
http://okmij.org/ftp/kakuritu/Hansei.html
https://hakaru-dev.github.io/


What are the PLs in HCIs?

• primitives, means of combination, means of abstraction 

• vs. just primitives (think gestures, clicks, etc.) 
that do not compose well 

• semantics? reasoning? verification? synthesis? 
constraints? probabilities? 

• communicating with a computer is communicating with a 
process that “blindly” manipulates symbols.


