
Making communicating with computers more accessible:
easier, faster, and safer

Pierce 209

Welcome!
•This is a graduate course; undergrads are welcome.

• can have taken 152 or 179 and be just fine, not necessarily both

• You (as a student presenter) will present and lead discussion for at least
one paper

• You (as a non-presenting student) will post questions and a summary of the
design arguments by Friday of the previous week

• Key learning outcomes:

• (279r) to look at scientific publications, identify the core design
arguments, write new design arguments, and evaluate them

• (252r) understand, design and implement language abstractions for
solving a task

• Group projects will be composed of both “HCI folks” and “PL folks”

Welcome!

• In undergraduate courses, you consume knowledge and
practice applying it.

• In graduate courses like this one, you attempt to
generate new knowledge.

I’m an HCI person.

I build novel interfaces and evaluate them in studies.

Since ~2015, I have found PL technology useful
for providing the magic behind the screen.

Evaluation is Hard.
But also, evaluation with respect to what?

Outline

1. Design Arguments

2. Some HCI evaluation techniques

3. Means of communicating with computers

Design Arguments
Person P [in setting S]
wants to achieve goal G but obstacles O1-N get in the way.

Any solution also has to:
satisfy constraints X1-N,
minimize costs Y1-N,
and avoid obstacles Z1-N.

Stakeholders + Domain
Core tension

Need

Axioms As designers, we bring the following
principles and constraints A1-N.

Our approach, ____________,
has characteristics C1-N

that help stakeholders achieve their
goal G while avoiding obstacles O1-N.

How do you
know?

How do existing
approaches fail?

What characteristics have you
borrowed from solutions that

succeeded in analogous settings?

What differentiates your approach
from previous solutions that failed?

Need Thesis

Approach Thesis

How have stakeholders responded
to/been able to use your approach?

Evidence

Evidence

Evidence

Outline

1. Design Arguments

2. Some HCI formative design and evaluation techniques

3. Means of communicating with computers

Some HCI Formative Design Techniques

• Survey

• Interview

• Contextual inquiry
• Observation in context
• Requests for explanation

• Wizard of Oz

• Technology probe

Some HCI Evaluation Techniques

• User study
• Task design
• Metrics

• Deployment

• Interview or survey of deployment participants

• Crowdsourcing, i.e., Amazon Mechanical Turk

Outline

1. Design Arguments

2. Some HCI formative design and evaluation techniques

3. Means of communicating with computers

Communicating with Computers
• Human intent
• Examples
• Statement(s) in a programming language
• Natural language
• …

• Computer’s interpretation
• Program
• Behavior
• Action in response to a human request
• Results of running understood program on additional data

Approach

Approach

Approach

PROSE Architecture

Credit: Alex Polozov

- Lu et al. “Interactive Program Synthesis” (2017)

“FlashFill in Excel is designed to cater
to users that care not about the

program but about its behavior on the
small number of input rows in the

spreadsheet.

Such users can simply eye-ball the
outputs of the synthesized program
and provide another example if they

are incorrect.

However, this becomes much more
cumbersome (or impossible) with a

larger spreadsheet.”

support.office.com

“We have observed that inspecting the
synthesized program directly also does
not establish enough confidence in it
even if the user knows programming.

Two main reasons for this are
(i) program readability, and
(ii) the users’ uncertainty in the
desired intent due to hypothetical
unseen corner cases in the data.”

- Lu et al. “Interactive Program Synthesis” (2017)

support.office.com

Discussion Preview

What is particularly hard 
about evaluating methods for
communicating with computers?

Evaluation
Why is it hard:

some puzzlers from programming languages

puzzler 1
easy vs safe

?

Array<Cat>
<:

Array<Animal>

puzzler 2
semantics

?

•let x = 1 in 
let f = let x = 2 in (\y -> y+x) 
let x = 3 in 
f 0 

•Is the result 1, 2 or 3?

puzzler 3
cognitive overhead

Programmer	

Hardware	

general	purpose	compiler	

(illustra2on:	Markus	Püschel)		

Programmer	

Hardware	

general	purpose	compiler	

(illustra2on:	Markus	Püschel)		

Programmer	

Hardware	

•  horizontal	and	ver:cal		
extensibility	

•  generic	op:miza:ons		
at	each	level	(cse,	dce,	...)	

Matrix,	Graph,	...	

Array,	Struct,	Loop,	...	

SIMD,	GPU,	cluster,	...	

Staging?

•multi-level language 
n | x | e @b e | λbx.e | ...

•MetaML / MetaOCaml 
n | x | e e | λx.e | <e> | ~e | run e

•Lightweight Modular Staging (LMS) in Scala 
driven by types: T vs Rep[T]

–Bjarne Stroustrup

“People confuse the familiar for the simple.
For new features, people insist on LOUD

explicit syntax. For established features,
people want terse notation.”

“People confuse the familiar for the simple. For new features,

people insist on LOUD explicit syntax. For established features,

people want terse notation.”

7/30/2016 https://upload.wikimedia.org/wikipedia/commons/2/21/Speaker_Icon.svg

https://upload.wikimedia.org/wikipedia/commons/2/21/Speaker_Icon.svg 1/1

| | |

7/30/2016 https://upload.wikimedia.org/wikipedia/commons/2/21/Speaker_Icon.svg

https://upload.wikimedia.org/wikipedia/commons/2/21/Speaker_Icon.svg 1/1

x

Quotation Type-Based PE

5

Power in Scala

def square(x: Int): Int = x*x

def power(b: Int, n: Int): Int = 
 if (n == 0) 1 
 else if (n % 2 == 0) square(power(b, n/2)) 
 else b * power(b, n-1)

// power(2, 7) == 128

Staged Power in Scala/LMS

def square(x: Rep[Int]): Rep[Int] = x*x

def power(b: Rep[Int], n: Int): Rep[Int] = 
 if (n == 0) 1 
 else if (n % 2 == 0) square(power(b, n/2)) 
 else b * power(b, n-1)

def snippet(b: Rep[Int]) = power(b, 7)

Generated Power n=7
class Snippet extends ((Int)=>(Int)) { 
 def apply(x0:Int): Int = { 
 val x1 = x0 * x0 
 val x2 = x0 * x1 
 val x3 = x2 * x2 
 val x4 = x0 * x3 
 x4 
 } 
}

Power in OCaml
let square x = x * x

let rec power n x =

 if n = 0 then 1

 else if n mod 2 = 0 then square (power (n/2) x)

 else x * (power (n-1) x)

(* val power : int -> int -> int = <fun> *)

Staged Power in MetaOCaml
let square x = x * x

let rec spower n x =

 if n = 0 then .<1>.

 else if n mod 2 = 0 then .<square .~(spower (n/2) x)>.

 else .<.~x * .~(spower (n-1) x)>.

(* val spower : int -> int code -> int code = <fun> *)

Generated Code
let spower7_code = .<fun x -> .~(spower 7 .<x>.)>.;;

(*

val spower7_code : (int -> int) code = .<

 fun x_1 ->

 x_1 * ((* CSP square *) (x_1 *  
 ((* CSP square *) (x_1 * 1))))>.

*)

Program generically…

… and run specialized!

Program generically…

… and run specialized!

(save human time)

(save computer time)

–Shonan Challenge for Generative Programming
(PEPM’13)

A matrix vector product, where the matrix is known
(static) but the vector is unknown (dynamic), 

 
e.g., for a Hidden Markov Model (HMM) where a single
transition matrix is multiplied by many different

observation vectors.

Unstaged
 def matrix_vector_prod(a: Array[Array[Int]], 
 v: Array[Int]) = { 
 val n = a.length 
 val v1 = new Array[Int](n) 
 for (i <- (0 until n)) { 
 for (j <- (0 until n)) { 
 v1(i) = v1(i) + a(i)(j) * v(j) 
 } 
 } 
 v1 
 }

Shonan Challenge
def matrix_vector_prod(a0: Array[Array[Int]], 
 v: Rep[Array[Int]]) = { 
 val n = a0.length 
 val a = staticData(a0) 
 val v1 = NewArray[Int](n) 
 for (i <- (0 until n):Range) { 
 val sparse = a0(i).count(_ != 0) < 3 
 for (j <- unrollIf(sparse, 0 until n)) { 
 v1(i) = v1(i) + a(i).apply(j) * v(j) 
 } 
 } 
 v1 
}

Shonan Challenge
def matrix_vector_prod(a0: Array[Array[Int]], 
 v: Rep[Array[Int]]) = { 
 val n = a0.length 
 val a = staticData(a0) 
 val v1 = NewArray[Int](n) 
 for (i <- (0 until n):Range) { 
 val sparse = a0(i).count(_ != 0) < 3 
 for (j <- unrollIf(sparse, 0 until n)) { 
 v1(i) = v1(i) + a(i).apply(j) * v(j) 
 } 
 } 
 v1 
}

Example Matrix
 val a0 =

 A(A(1, 1, 1, 1, 1), // dense

 A(0, 0, 0, 0, 0), // null

 A(0, 0, 1, 0, 0), // sparse

 A(0, 0, 0, 0, 0),

 A(0, 0, 1, 0, 1))

Generated Code
class Snippet(px6:Array[Int]) extends ((Array[Int])=>(Array[Int])) { 
 def apply(x0:Array[Int]): Array[Int] = { val x2 = new Array[Int](5) 
 val x6 = px6 // static data: Array(1,1,1,1,1) 
 var x4 : Int = 0 
 val x13 = while (x4 < 5) { 
 val x5 = x2(0); val x7 = x6(x4); val x8 = x0(x4) 
 val x9 = x7 * x8; val x10 = x5 + x9; 
 val x11 = x2(0) = x10 
 x4 = x4 + 1 } 
 val x14 = x2(1); val x17 = x2(1) = x14 
 val x22 = x2(2); val x24 = x2(2) = x22 
 val x19 = x0(2); val x25 = x22 + x19 
 val x26 = x2(2) = x25; val x27 = x2(3); val x29 = x2(3) = x27 
 val x30 = x2(4); val x32 = x2(4) = x30 
 val x33 = x30 + x19; val x34 = x2(4) = x33 
 val x21 = x0(4); val x35 = x33 + x21; val x36 = x2(4) = x35 
 x2 }}

Turning Interpreters into Compilers

Turning Interpreters into Compilers

Code
stage

Code
interpret

input

result

Code
stage

Code
interpret

actual
input

symbolic
input

exec
resultCode

stage

Code
interpret

input

result

Turning interpreters into compilers

Code
stage

Code

RE: ^ab*

actual
input

symbolic
input

exec
result

in: Rep[String]

Scala: if (in(0) == ‘a’) …

“abcd”

interpret

Usability Issues

• cognitive overhead of multi-level language

• notational overhead?

• multi-stage errors

puzzler 4
synthesis

Programming by Example

• f(1)=2, f(2)=3, …

• g(1)=2, g(2)=4, …

• h(1)=3, h(2)=5, …

SMT solver underspecified

• (assert (and (= (f 1) 2) (= (f 2) 3)))

• Model: 
f(x) = if x=2 then 3 else if x=2 then 3 else 2

• Try it: https://rise4fun.com/Z3/bpMYx

https://rise4fun.com/Z3/bpMYx

SMT solver overspecified

• (assert (forall ((x Int) (y Int)) 
 (=> (or (and (= x 1) (= y 2)) 
 (and (= x 2) (= y 3))) 
 (= y (+ (* a x) b)))))

• Solution: a=1, b=1, so f(x)=x+1.

• Try it: https://rise4fun.com/Z3/HcJY

https://rise4fun.com/Z3/HcJY

SMT solver full program

(declare-const a Int) 
(declare-const b Int) 
(define-fun f ((x Int)) Int (+ (* a x) b)) 
(assert (and (= (f 1) 2) (= (f 2) 3))) 
(check-sat) 
(get-model)

• Try it: https://rise4fun.com/Z3/jhr8

https://rise4fun.com/Z3/jhr8

Usability Issues

• Trade-offs, e.g. between expressivity and decidability.

• Need to be precise induces cognitive overhead.

• Precision is brittle.

• Many ways to encode.

Why evaluation is hard

• Many conflicting dimensions: faster, safer, easier

• Does a new toolkit enable new ways

• of thinking?

• of programming?

• of creating?

Discussion

What is particularly hard 
about evaluating methods for
communicating with computers?

Group Projects
•Systems HCI requiring heavy-duty PL

• Humans modifying DSLs for PBD
(programming by demonstration)

• Examplore with interactively
defined templates

• Generic human-centered PL

• Pick language feature, design it
in a human-friendly way

• Pick a language, describe how—and
to what extent—its features are
being used in the wild

• Usable + X (PL technique)

• Usable Generative Programming

• Usable Probabilistic Programming

• Usable Type System / Verification

• Usable Synthesis

• inductive bias alignment between
human and machine

• ranking function improvements

• DSL improvements

• expressing constraints on
intermediate states, i.e.,
equivalence values or types

Thank you!

