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We lcome'!

e This 1s a graduate course; undergrads are welcome.
e can have taken 152 or 179 and be just fine, not necessarily both

e You (as a student presenter) will present and lead discussion for at least
one paper

e You (as a non-presenting student) will post questions and a summary of the
design arguments by Friday of the previous week

e Key learning outcomes:

e (279r) to look at scientific publications, identify the core design
arguments, write new design arguments, and evaluate them

e (252r) understand, design and implement language abstractions for
solving a task

® Group projects will be composed of both “HCI folks” and “PL folks”



We lcome'!

* In undergraduate courses, you consume knowledge and
practice applying 1it.

e In graduate courses like this one, you attempt to
generate new knowledge.



'm an HCI person.



| build novel intertaces and evaluate them in studies.

Since ~2015, | have found PL technology useful
for providing the magic behind the screen.



Harvard John A. Paulson
School of Engineering
and Applied Sciences

PL/HCI Seminar (252R/279R)

Fvaluation 1s Hard.

But also, evaluation with respect to what?



Outline

1. Design Arguments
2. Some HCI evaluation techniques

3. Means of communicating with computers



Design Arguments

Need Thesis

Stakeholders + Domain Person P [in setting S]
Core tension wants to achieve goal G but obstacles O1.n get in the way. Evidence

Evidence

.o

How do you
know?

! How do existing
{ approaches fail?

Need Any solution also has to:

satisfy constraints Xq.n,
minimize costs Yq.n,
and avoid obstacles Z1.n.

Evidence

Axioms As designers, we bring the following -
srinciples and constraints Aq.n. { What characteristics have you

borrowed from solutions that §
succeeded in analogous settings? |
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Approach Thesis Our approach, ,
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that help stakeholders achieve their § at difrerentiates your approac
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Visualizing APl Usage Examples at Scale

Elena L. Glassman**, Tianyi Zhang/*, Bjorn Hartmann*, Miryung Kim/'
=UC Berkeley, Berkeley, CA, USA
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Interactive visualization showing
common usage and frequency

Figure 1. EXAMPLORE takes a focal API call that a programmer is interested in, locates uses of that API call in a large corpus of mined code examples,
and then produces an interactive visualization that lets programmers explore common usage patterns of that APl across the corpus.

ABSTRACT
Using existing APIs properly 1s a key challenge in program-
ming, given that libraries and APIs are increasing in number
and complexity.

OWCVCI,

INTRODUCTION

Learning how (o correctly and cllectively use existing APIs 1s
a common task — and a core challenge — in soltware develop-
ment. It spans all expertise levels from novices to professional
software engineers, and all project types from prototypes to
production code. The landscape of publicly available APIs is
massive and constantly changing, as new APIs are created in
response (0 shifting programmer needs. Within companies,
the same is true, perhaps even more so: joining a company can
require learning a whole new set of proprictary APIs before
a developer becomes an effective contributor to the company
codebase. Developers often are stymicd by various learning
barriers, including overly specific or overly general explana-
tions of API usage, lack of understanding about the interaction
between multiple APIs, lack of alternative uses, and difficulty
1dentifying program slalements and structures related o an
API [11, 19, 5].

One study found that the greatest obstacle to learning an APl 1s
“insufficient or inadeauate examples.” 1191 Official documenta-
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Some HCI Formative Design Techniques

* Survey
e Interview

e Contextual 1nquiry
e Observation 1n context
e Requests for explanation

e Wizard of Oz

e Technology probe



Some HCI Evaluation Techniques

e User study
e Task design
e Metrics

e Deployment
e Tnterview or survey of deployment participants

e Crowdsourcing, 1.e., Amazon Mechanical Turk
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Communicating with Computers

* Human 1intent
e Examp les
e Statement(s) in a programming language
e Natural Llanguage

e Computer’s 1interpretation
e Program
e Behavior
e Action 1n response to a human request
e Results of running understood program on additional data
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Interactive data extraction platform
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PROSE Architecture

Refined intent
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Intent spec ¢

> Program Synthesizer Debugging

Ranking function h

Testinputsg  Intended program in
Python/C#/C++/...

Credit: Alex Polozov



"FlashFill in Excel is designed to cater
to users that care not about the
program but about its behavior on the
small number of input rows in the

spreadsheet.

Bl First N\ame  Last Name  Full Name

. 2 [ Shasthri  Jay Shasthri

Such users can simply eye-ball the . asthri— Jay nasn

. 3 |Pratap pillai ‘Pratap Pillai l
outputs of the synthesized program 4 |Madhu S——

and provide another example if they 5 |Victoria  Marsh
© David Pizarro

are incorrect.

support.office.com

However, this becomes much more
cumbersome (or impossible) with a

la rger spreadsheet.” - Lu et al. “Interactive Program Synthesis” (2017)



"We have observed that inspecting the
synthesized program directly also does
not establish enough confidence in it
even if the user knows programming.

Two main reasons for this are
(i) program readability, ana
(ii) the users’ uncertainty in the
desired intent due to hypothetical
unseen corner cases in the data.”

Bl First Name  Last Name  Full Name

2 |lay Shasthri Jay Shasthri

5 |Pratap Pillai IPratap Pillaif “
4 'Madhu Srivastava

5 |Victoria Marsh

© |David Pizarro

support.office.com

- Lu et al. “Interactive Program Synthesis” (2017)




Discussion Preview

What 1s particularly hard
about evaluating methods for
communicating with computers?
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Evaluation

Why 1s 1t hard:
some puzzlers from programming Llanguages



puzzler 1
easy vs safe



Array<Cat>
<.

Array<Animal>



puzzler 2
semantics



e let X =1 1n
let f = let x = 2 in (\y — y+Xx)
let x = 3 1n
f 0

e]s the result 1, 2 or 37



puzzler 3
cognitive overhead



Programmer

@ - general purpose compiler

Hardware

(illustration: Markus Piischel)



Programmer

............................... Matrix, Graph,

* horizontal and vertical
extensibility

* generic optimizations

Hardware at each level (cse, dce, ...)

.................................. Array, Struct, LOOp,

............................... SIMD, GPU, cluster, ...



Staging?

emulti-level language
n | x | e @ e | Abx.e |

e MetaML / MetaOCaml
n | x | ee | Ax.e | <e> | ~e | run e

e Lightweight Modular Staging (LMS) in Scala
driven by types: T vs Rep|T]



“People confuse the familiar for the simple.
For new features, people 1insist on LOUD
explicit syntax. For established features,
people want terse notation.”

—Bjarne Stroustrup

) | | w

Quotation Type-Based PE




Power 1n Scala

def square(x: Int): Int = xxx

def power(b: Int, n: Int): Int =
if (n ==0) 1
else if (n % 2 == @) square(power(b, n/2))
else b x power(b, n-1)

// power(2, 7) == 128



Staged Power 1n Scala/LMS

def square(x: ReplInt]): ReplInt] = Xxxx

def power(b: Rep[Int], n: Int): ReplInt] =
if (n ==0) 1
else if (n % 2 == @) square(power(b, n/2))
else b x power(b, n-1)

def snippet(b: Rep[Int]) = power(b, 7)



Generated Power n=7/

class Snippet extends ((Int)=>(Int)) {
def apply(x0:Int): Int = {

val X1 = x0 *x x0
val X2 = x0 *x x1
val X3 = X2 % X2
val x4 = x0 *x x3
x4

I3



Power 1n 0OCaml

let square x = X * X

let rec power n x =
1f n = 0 then 1

else if n mod 2 = @ then square (power (n/2) x)

else x *x (power (n-1) x)

(x val power : int —> int —> int = <fun> x)



Staged Power 1n MetaOCaml

let square x = X *x X

let rec spower n x =
1f n = 0 then .<1>.
else if n mod 2 = @ then .<square .~(spower (n/2) x)>.
else .<.~X * .~(spower (n-1) x)>.

(x val spower : int —> int code —> int code = <fun> )



Generated Code

let spower7_code = .<fun x —> .~(spower 7 .<x>.)>.;;
(%
val spower7_code : (int —> int) code = .<

fun x 1 —>

X_1 x ((*x CSP square %) (x_1 %
((x CSP square %) (x_ 1 % 1))))>.



Program generically..

. and run specialized!



Program generically..
(save human time)

..and run specilalized'
(save computer time)



A matrix vector product, where the matrix 1s known
(static) but the vector is unknown (dynamic),

e.g., for a Hidden Markov Model (HMM) where a single
transition matrix 1s multiplied by many different
observation vectors.

—Shonan Challenge for Generative Programming
(PEPM’"13)



Unstaged

def matrix_vector_prod(a: Arrayl[Array[Int]],
v: Array[Int]) = {
val n = a. length
val vl = new Array[Int](n)
for (i <= (@ until n)) {
for (j <= (@ until n)) {
vi(i) = v1(i) + a(i)(j) * v(j)



Shonan Challenge

def matrix_vector_prod(a@: Arrayl[Array[Int]],
v: Repl[Array[Int]]) = {
val n = af. length
val a = staticData(a0)
val vl = NewArray[Int](n)
for (1 <= (@ until n):Range) {
val sparse = a@(i).count(_ !'=0) < 3
for (j <— unrollIf(sparse, @ until n)) A
\ vi(i) = v1(i) + a(i).apply(j) * v(j)

}
v1]



Shonan Challenge

def matrix_vector_prod(a@: Array[Array[Int]],
v: Repl[Array[Int]]) = {
val n = af. length
val a = staticData(a0)
val vl = NewArray[Int](n)
for (1 <= (@ until n):Range) {
val sparse = a@(i).count(_ '=0) < 3
for (j <— unrollIf(sparse, @ until n)) {
\ vi(i) = v1(i) + a(i).apply(j) * v(j)

}
v1]



Examp le Matrix

val ad =
A(A(1, 1, 1, 1, 1), // dense
A(@, 0, 0, 9, @), // null
A(o, 0, 1, 0, @), // sparse
A(o, 0, 0, 0, 0),

A(o, 0, 1, 0, 1))



X2 }}

Generated Code

class Snippet(px6:Array[Int]) extends ((Arr ay[Int]) >(Array[Int])) {
def apply(x0:Array[Int]): Arrayl[Int] = { val x2 = new Array[Int](5)
val x6 = px6 // static data: Array(1,1,1,1,1)
var x4 : Int = 0
val x13 = while (x4 < 5) {
val x5 = x2(0); val x7 = x6(x4); val x8 = x0(x4)
val X9 = x7 *x x8; val x10 = x5 + x9;
val x11 = x2(0) = x10
x4 = x4 + 1 }
val x14 = x2(1); val x17 = x2(1) = x14
val x22 = x2(2); val x24 = x2(2) = x22
val x19 = x0(2): val x25 = x22 + x19
val x26 = x2(2) = x25; val x27 = x2(3); val x29 = x2(3) = x27
val x30 = x2(4); val x32 = x2(4) = x30
val x33 = x30 + x19; val x34 = x2(4) = x33
val x21 = x0(4); val x35 = x33 + x21; val x36 = x2(4) = x35



Turning Interpreters i1nto Compilers



Turning Interpreters into Compilers

> Code
stage



Input

l

Interpret

> result

stage



Input

l

Interpret

symbolic
iInput

l

Interpret

>

stage

result

actual
iInput

exec

>

result



Turning interpreters into compilers

in: Rep[String] “abcd”
symbolic actual
Input Input

l l

Interpret exec
Code e Code > result
stage

RE: Mab* Scala: if (in(0) == ‘@’) ...




Usability Issues

e cognitive overhead of multi-level language
e notational overhead?

e nulti-stage errors



puzzler 4
synthes1s



Programming by Example

e f(1)=2, f(2)=3, .

e g(1)

2, g(2)=4, ..

e h(1)=3, h(2)=5, ..



SMT solver underspecified

e (assert (and (= (f 1) 2) (= (f 2) 3)))

e Model:
f(x) = if x=2 then 3 else if x=2 then 3 else 2

e Try 1t: https://rise4fun.com/Z3/bpMYx



https://rise4fun.com/Z3/bpMYx

SMT solver overspecified

e (assert (forall ((x Int) (y Int))
(=> (or (and (= x 1) (=vy 2))
(and (= x 2) (=vy 3)))
(=y (+ (x a x) b)))))

e Solution: a=1, b=1, so f(x)=x+1.

e Try it: https://rised4fun.com/Z3/HcJY



https://rise4fun.com/Z3/HcJY

SMT solver full program

(declare-const a Int)

(declare-const b Int)

(define—fun f ((x Int)) Int (+ (x a x) b))
(assert (and (= (f 1) 2) (= (f 2) 3)))
(check-sat)

(get-model)

e Try 1t: https://rised4fun.com/Z3/1hr8



https://rise4fun.com/Z3/jhr8

Usability Issues

* Trade-offs, e.g. between expressivity and decidability.
* Need to be precise induces cognitive overhead.
e Precision 1s brittle.

e Many ways to encode.



Why evaluation 1s hard

e Many conflicting dimensions: faster, safer, easier
e Does a new toolkit enable new ways

e of thinking?

e of programming?

e of creating?



Discussion

What 1s particularly hard
about evaluating methods for
communicating with computers?



Group Projects

e Usable + X (PL technique)

e Systems HCI requiring heavy-duty PL

L e Usable Generative Programming
e Humans modifying DSLs for PBD

(programming by demonstration) e Usable Probabilistic Programming

e Examplore with interactively e Usable Type System / Verification
defined templates

e Usable Synthesis

* Generic human-centered PL e inductive bias alignment between

. , , human and machine
e Pick language feature, design 1it

in a human-friendly way e ranking function improvements

. _ e DSL 1improvements
e Pick a language, describe how-—and

to what extent—its features are ® expressing constralnts on

being used in the wild intermediate states, 1.e.,
equivalence values or types



Thank you!



